

Early cortical proprioceptive processing is not affected by muscle fatigue: an MEG study

Junru Chen, Toni Mujunen, Feiyue Li, Harri Piitulainen Liikuntatieteen päivät tutkimusesittelyitä

3. 9. 2025

Muscle fatigue can alter or impair proprioception

- A number of central changes occur during muscle fatigue and affect, for example, proprioception, tremor, and postural control (Gandevia, 2001).
- Muscle fatigue is not just a matter of peripheral mechanisms accompanying depletion of muscle energy supplies, but includes activation processes at spinal and cortical levels (Proske & Gandevia, 2012).
- Our aim is to investigate whether muscle fatigue affect the 'pure' cortical proprioception during passive movement.

Measure of cortical proprioceptive processing

- Corticokinematic coherence (CKC) between limb kinematics and MEG signals reflects cortical processing of proprioceptive afference.
- Proprioceptive afference from the proprioceptors, such as muscle spindles, Golgi tendon organs and joint receptors is elicited by continuous passive movement stimulation.
- Primary proprioceptive input travels to the SM1 cortex contralateral to the stimulation, but also widely to other cortices.

Acc recording

Acc signals
$$= x$$

MEG recording

MEG signals = y

Coherence analysis

$$P_{xy}(t) = \frac{1}{K} \sum_{k} X_{k}(t) Y_{k}(t)$$

$$Coh_{xy}(t) = \frac{\left| P_{xy}(t) \right|^{2}}{P_{k}(t) P_{k}(t)}$$

Methods:

Experimental procedure

- 24 healthy participants, 30.7
 ± 6.5 yr, 11 males; 21 right-footed, 3 mixed-footed.
- All the measurements were performed in seated position inside the MEG room.
- The duration between the CKC recording and fatigue tasks was 278 ± 54 s.

JYU SINCE 1863.

1.9.2025

Results:

Muscle fatigue-related indicators

Results:

No fatigue-related effect on CKC

Results:

Fatigue-induced changes in neural oscillations

Frequency (Hz)

Conclusion

- Plantar-flexor muscle fatigue has no significant effect on the early cortical processing of proprioceptive afference, suggesting that CKC is resistant to fatigue or recover rapidly (5-10 min) after exercise.
- The increase of α and β power following muscle fatigue reflected fatigue-induced modulation of neuronal proprioceptive processing.
- Our following studies will track cortical proprioceptive processing during the fatigue task to identify possible acute fatigue effects on cortical proprioception.

Thank you!

Junru Chen
Liikuntatieteen päivät tutkimusesittelyitä
3. 9. 2025