

University of Pittsburgh

The 33rd Finnish Exercise Testing Symposium, Helsinki Finland,March 29-30, 2023

Physiological Monitoring of Resilience During Arduous Tactical Training: Maintaining Readiness and Occupational Performance

> Bradley C. Nindl, PhD, FACSM, COL, MS (USAR) Professor and Director

Neuromuscular Research Laboratory/Warrior Human Performance Research Center

Department of Sports Medicine and Nutrition

University of Pittsburgh, Pittsburgh, PA, USA

bnindl@pitt.edu

SITY OF PIT

<u>Neuromuscular Research Laboratory/</u> <u>Warrior Human Performance Research Center</u>

Musculoskeletal Injury Prevention and Human Performance Optimization

<u>Neuromuscular Research Laboratory</u> Established in 1987 to describe effects of injury on joint proprioception, neuromuscular control, and functional joint stability

Warrior Human Performance Research Center

Military emphasis started in 2005 as musculoskeletal injuries represent a threat to military readiness and national security

Eagle Tactical Athlete Program (ETAP) University of Pittsburgh / The US Army 101st Airborne Division (Air Assault)

THREATS TO THE FORCES: "Musculoskeletal Injuries in the Military: A Hidden Epidemic"

SOLUTIONS: Systematic and Scientific Approach (Public Health Model) for Injury Prevention and Performance Optimization

Phase I: Injury Surveillance and Task/Demand Analysis

- Development of customized database for medical information and laboratory data
- Field assessments of military tasks and energy requirements during tactical training

Phase III: Development / Validation of ETAP

- · Based on the non-linear periodization model
- Clinical Trials to validate the effectiveness of the predictors of injury and optimal performance

Phase II: Predictors of Injury and Optimal Performance

- Laboratory tests to replicate biomechanical tasks and physiological demands and performance measures
- Over 1000 testing sessions completed

Phase IV: ETAP Division Implementation and Monitoring

- · Develop a 4-day school and validate knowledge transfer
- Implementation of ETAP Division-wide (~25,000 Soldiers)
- ETAP resulted in significant reductions in the proportion of soldiers with musculoskeletal injuries

Remote Neuromuscular Research Laboratory Capability

Complete Assessment and Measurement of Human Physical Performance

Physiological Assessment

Treadmill w/metabolic cart Aerobic Capacity

Velotron ergometer Anaerobic Performance

Bod Pod Body Composition

Vicon Motion Analysis Biomechanical Assessment

Neuromuscular Assessment

Biodex Muscular Strength

<u>Neurocom</u> Sensorimotor Control

Monitoring work and training load in military settings – what's in the toolbox?

Scott W. Michael ^(D)^a, Andrew G. Siddall ^(D)^b, Thomas J. O'Leary^c, Herbert Groeller ^(D)^a, John A. Sampson ^(D)^a, Sam D. Blacker ^(D)^b and Jace R. Drain ^(D)^d JSAMS 2022

^aCentre of Medical and Exercise Physiology, University of Wollongong, Wollongong, Australia; ^bOccupational Performance Research Group, Institute of Sport, University of Chichester, Chichester, UK; ^cArmy Health and Performance Research, Army Headquarters, Andover, UK; ^dLand Division, Defence Science and Technology Group, Melbourne, Australia

Measure	Internal/External	
Diaries and Training Logs	External (descriptive)	
Direct Observations	External (descriptive)	
Oxygen Consumption Internal (metabolic)		
Accelerometry	External (kinematic)	
Global Positioning Devices	External (kinematic)	
Heart Rate	Internal (cardiovascular)	
Doubly Labelled Water	Internal (metabolic)	
Biomarkers	Internal (load)	
Subjective Self-Report Measures	External (perceptual)	

Review

Physiological biomarker monitoring during arduous military training: Maintaining readiness and performance JSAMS 2023

Kristen J. Koltun *, Matthew B. Bird, Jennifer N. Forse, Bradley C. Nindl

Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, United States of America

The Appropriate Use of Science and Technology to Understand and Enhance Military Readiness, Resilience, and Lethality is a 21st Century Imperative

- Must provide actionable information for Military Leadership in the form of dashboards/decision aids/algorithms
 - Must be implementable in arduous field environments
 - Must be an integrated, holistic, comprehensive, multi-disciplinary, team-centric approach involving all stakeholders to make significant impact
 - Must leverage advances in wearable technologies
 - Must involve and capitalize on data analytics

What is *resilience*?

- Literature review: <u>104 definitions</u> of resilience
- "The demonstration of positive adaptation in the presence of significant adversity"
 - Britt & Sinclair, 2015
- "The capacity to overcome the negative effects of setbacks and associated stress on cognitive function or performance"
 - NMRL, 2017

Center for Military Health Policy Research

LISA S. MEREDITH + CATHY D. SHERBOURNE SARAH GAILLOT + LYDIA HANSELL + HANS V. RITSCHARD ANDREW M. PARKER + GLENDA WRENN

Citation

Nindl, B. C., Billing, D. C., Drain, J. R., Beckner, M. E., Greeves, J., Groeller, H., ... & Taylor, N. A. (2018). Perspectives on resilience for military readiness and preparedness: Report of an international military physiology roundtable. *Journal of science and medicine in sport*.

WARFIGHTER APPLICATIONS REVIEW

Review

Optimising training adaptations and performance in military environment **JSAMS**, 2018

Heikki Kyröläinen^{a,b,*}, Kai Pihlainen^c, Jani P. Vaara^b, Tommi Ojanen^d, Matti Santtila^b

HUMAN PERFORMANCE OPTIMIZATION METRICS: CONSENSUS FINDINGS, GAPS, AND RECOMMENDATIONS FOR FUTURE RESEARCH JSCR, 29(115): 5221-5245, 2015

BRADLEY C. NINDL,^{1,2} DIANNA P. JAFFIN,³ MICHAEL N. DRETSCH,⁴ SAMUEL N. CHEUVRONT,⁵ NANCY J. WESENSTEN,⁶ MICHAEL L. KENT, 'NEIL E. GRUNBERG,³ JOSEPH R. PIERCE,¹ ERIN S. BARRY,³ JONATHAN M. SCOTT,³ ANDREW J. YOUNG,⁵ FRANCIS G. O'CONNOR,³ AND PATRICIA A. DEUSTER³

Human Dimension Proof of Concept Athletic Performance Portfolio Prioritization Pentagon Meeting Feb 2016

- Key Task: Leverage the most advanced techniques in health, sports medicine, nutrition, and fitness to increase wellness and optimize the physical performance of our Soldiers and Army Civilians
- Physical Readiness Definition: The ability to meet the physical demands of any combat or duty position, accomplish the mission, and continue to win.
 - Physical Dominance
 - Overmatch
 - Strength
 - Agility
 - Speed
 - Endurance

Human Dimension Proof of Concept Athletic Performance Portfolio Prioritization Pentagon Meeting Feb 2016

- Evaluation Criteria
 - Relevance
 - Scalability
 - Ease of Implementation
 - Effectiveness
 - Assessment Plan
 - Potential Cost Avoidance
 - Efficiency

Human Dimension Proof of Concept Athletic Performance Portfolio Prioritization Pentagon Meeting Feb 2016

- Evaluation Criteria
 - Relevance (27)
 - Scalability (12)
 - Ease of Implementation (15)
 - Effectiveness (25)
 - Assessment Plan (8)
 - Potential Cost Avoidance (7)
 - Efficiency (6)

Functional Tactical-Related Metrics

Obstacle Course

Nindl et al., JSCR

PES Test Outcomes

Development of the Tactical Human Optimization, Rapid **Ray Bear Rehabilitation**, and HPC, 3rd SFG **Reconditioning Program Military Operator Readiness Assessment** for the Special Forces Operator

Strength and Conditioning, 2016

11 Tactically Relevant and Physically Taxing Events

PHOTO 1

Repetitive Boxlifting Test

РНОТО 3

International Journal of Environmental Research and Public Health

Article Training-Induced Acute Neuromuscular Responses to Military Specific Test during a Six-Month Military Operation

Kai Pihlainen ^{1,*}, Arto J Pesola ², Joonas Helén ³, Keijo Häkkinen ⁴, Taija Finni ⁴, Tommi Ojanen ⁵, Jani P. Vaara ³, Matti Santtila ³, Jani Raitanen ^{6,7} and Heikki Kyröläinen ^{3,4}

Eigure 1. Illustration of the military simulation test track including eight tasks (1. 8) of the test

Strength & Power Assessment

- 1RMs: squat, BP, HP
 Explosive Jump Squats
 Explosive Bench Throws
- 30% of 1RM

Peak Power (PP) Mean Power (MP) **Plyometric Power Machine**

Rate of Force Development (RFD)

Squat Endurance Test

Absolute Endurance Test

100 LBS (45.36 kg)

36.2 cm displacement

37.5 repetitions/minute

2013 National Strength and Conditioning Association's 2nd Blue Ribbon Panel on Military Physical Readiness: Military Physical Performance Testing

- Jump or leap over obstacles
- Move with agility-coordination
- Carry heavy load
- Drag heavy load
- Run long distance
- Move quickly short distances
- Climb over obstacles
- Lift heavy objects
- Load/stow/mount hardware

2013 National Strength and Conditioning Association's 2nd Blue Ribbon Panel on Military Physical Readiness: Military Physical Performance Testing

- Health-Related Fitness
 - Body Composition
 - Cardiovascular Fitness
 - Flexibility
 - Muscular Strength
 - Muscular Endurance
- Skill-Related Fitness
 - Speed
 - Agility
 - Balance
 - Coordination
 - Reaction Time
 - Power

- 1. Strength
- 2. Power
- 3. Endurance
- 4. Body Composition
- 5. Coordination
- 6. Balance
- 7. Agility
- 8. Flexibility
- 9. Aerobic
- 10. Speed
- 11. Reaction time

History of U.S. Army Physical Training

- COL Herman J. Koehler considered the "Father of Army Physical Training"
 - Gymnastics background.
 - COL Koehler began his tenure at West Point in 1885.
 - Much of the training was based upon methods for improving mechanical efficiency through calisthenics and gymnastics, just as he had learned in his youth.
- President Teddy Roosevelt understood the importance of physical preparedness.
 - In 1907 he ordered annual physical tests of all field officers in the Army. This test included either 3 consecutive days of riding horseback 30 miles on each day, or a 50 mile foot march to be made in 3 consecutive days and taking no more than 20 hours including rests.

Holistic Health and Fitness: A Better Way to Readiness

By Maj. Gen. Anthony C. Funkhouser

Holistic Health and Fitness (H2F) is combination of doctrine and specific techniques design to address our warriors challenges by improving performance, cognitive dominance and resilience across the force. The Master Fitness Trainer Course (MFTC) is preparing it's candidates in the science and application of strength and condition fundamentals that foster H2F principles into the Army's physical readiness

OCTOBER 2020 DISTRIBUTION RESTRICTION:

Approved for public release; distribution is unlimited. This publication supersedes chapters 1–6 and appendix D of FM 7-22, dated 26 October 2012. **HEADQUARTERS, DEPARTMENT OF THE ARMY**

Paavo Nurmi

"Soldiers don't go into combat with t-shirts and shorts"

BIOMARKERS IN SPORTS AND EXERCISE: TRACKING HEALTH, PERFORMANCE, AND RECOVERY IN ATHLETES

ELAINE C. LEE,¹ MAREN S. FRAGALA,² STAVROS A. KAVOURAS,³ ROBIN M. QUEEN,⁴ JOHN LUKE PRYOR,⁵ AND DOUGLAS J. CASA¹

DIET Co TRAINING	DIET Analysis: Comprehensive Biomarker Panel	
	Nutrition	Glucose, Cholesterol, Lipids, Total protein
	Hydration status	BUN: blood creatinine, urine osmolality
	Muscle status	Testosterone, DHEA, IGF-I, SHBG, LH, Cortisol
	Cardiovascular Endurance	Hemoglobin, Transferrin, total iron concentration
	Injury Risk	Bone mineral density, CRP, cytokine, IGF-I
	Inflammation	IL-1β, IL-6, IL-10, CBC/diff

military operational stress

REVIEW

Bradlev C. Nindl Da

Routledge Taylor & Francis Group

- Biomarker panel more appropriate than single hormone
- Real-time physiological monitoring
- Early identification and intervention for at risk-Soldiers to improve resiliency

^aNeuromuscular Research Laboratory/Warrior Human Performance Research Center. Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA; ^bInstitute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin

University, Geelong, Australia; ^cSchool of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia

DIABETES TECHNOLOGY & THERAPEUTICS Volume 5, Number 3, 2003 © Mary Ann Liebert, Inc.

Measurement of Insulin-Like Growth Factor-I During Military Operational Stress via a Filter Paper Blood Spot Assay

BRADLEY C. NINDL, Ph.D.,¹ MARK D. KELLOGG, Ph.D.,² M. JAVAD KHOSRAVI, Ph.D.,^{3,4} ANASTASIA DIAMANDI, Ph.D.,³ JOSEPH A. ALEMANY, B.S.,¹ DIANE M. PIETILA, M.S.,¹ ANDREW J. YOUNG, Ph.D.,² and SCOTT J. MONTAIN, Ph.D.²

Innovative Methodology

Am J Physiol Regul Integr Comp Physiol 300: R1326–R1332, 2011. First published March 9, 2011; doi:10.1152/ajpregu.00313.2010.

A novel, noninvasive transdermal fluid sampling methodology:

IGF-I measurement following exercise

D. E. Scofield,¹ H. L. McClung,² J. P. McClung,² W. J. Kraemer,³ K. R. Rarick,¹ J. R. Pierce,¹ G. J. Cloutier,⁴ R. A. Fielding,⁴ R. W. Matheny, Jr.,¹ A. J. Young,² and B. C. Nindl¹

Microdialysis-Assessed Exercised Muscle Reveals Localized and Differential IGFBP Responses to Unilateral Stretch Shortening Cycle Exercise

Bradley C. Nindl^{1,2,3*}, Juha Ahtiainen⁴, Sheila S. Gagnon⁴, Ritva S. Taipale⁴, Joseph R. Pierce^{2,3}, Brian J. Martin¹, Meaghan E. Beckner¹, M. Lehti⁴, Keijo Häkkinen⁴ and Heikki Kyröläinen⁴ Am J Physiol Regul Integr Comp Physiol 303: R1080-R1089, 2012. First published August 29, 2012; doi:10.1152/ajpregu.00275.2012.

IGF-I measurement across blood, interstitial fluid, and muscle biocompartments following explosive, high-power exercise

Bradley C. Nindl,^{1*} Maria L. Urso,^{1*} Joseph R. Pierce,¹ Dennis E. Scofield,¹ Brian R. Barnes,¹ William J. Kraemer,² Jeffrey M. Anderson,² Carl M. Maresh,² Kathleen N. Beasley,¹ and Edward J. Zambraski¹

RESEARCH ARTICLE

Insulin-like growth factor-I biocompartmentalization across blood, interstitial fluid and muscle, before and after 3 months of chronic resistance exercise

Adam J. Sterczala,¹ Joseph R. Pierce,² Brian R. Barnes,² Maria L. Urso,² Ronald W. Matheny,² Dennis E. Scofield,² Shawn D. Flanagan,¹ Carl M. Maresh,³ Edward J. Zambraski,²
 William J. Kraemer,^{3,4} and Bradley C. Nindl^{1,2}

Microdialysis-Assessed Exercised Muscle Reveals Localized and Differential IGFBP Responses to Unilateral Stretch Shortening Cycle Exercise

Bradley C. Nindl^{1,2,3*}, Juha Ahtiainen⁴, Sheila S. Gagnon⁴, Ritva S. Taipale⁴, Joseph R. Pierce^{2,3}, Brian J. Martin¹, Meaghan E. Beckner¹, M. Lehtl⁴, Keijo Häkkinen⁴ and Heikki Kyröläinen⁴

Front Endo, 2020

ISF Measures:

No change in IGF-I Increased IGFBP-3 Decreased IGFBP-5 <u>Influenced by load</u>

Extracellular Vesicles (EVs)

An unexplored biomarker in military operational stress

- EVs are a "universal vehicle"
 - Released by nearly all cell types (Tetta et al., 2013)
 - Can be isolated from various body fluids (Thery et al., 2018)
- EVs provide a "comprehensive package"
 - Protective lipid-bilayer during transport (Beninson & Fleshner, 2014)
 - Transfer biological contents between cells
 - EV cargo mirrors genetic and proteomic content of parent cell (Akers et al., 2013)

Cognitive Resilience Study

Cognition Test Battery

- 1. Motor Praxis
- 2. Visual Object Learning
- 3. Fractal 2-Back
- 4. Abstract Matching
- 5. Line Orientation
- 6. Emotion Recognition
- 7. Matrix Reasoning
- 8. Digital Symbol Substitution
- 9. Balloon Analog Risk
- 10. Psychomotor Vigilance

38

- Low: CD-RISC \leq 79
- Mod: CD-RISC >79, ≤ 90
- High: CD-RISC > 90

- Low: $\dot{V}O_{2peak} \le 44.87 \text{ mL} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$
- Mod: $\dot{V}O_{2peak}$ >44.87, \leq 51.53 mL·kg⁻¹·min⁻¹
- High: $\dot{VO}_{2peak} > 51.53 \text{ mL} \cdot \text{kg}^{-1} \cdot \text{min}^{-1}$

Military Tactical Adaptive Decision Making During Simulated Military Operational Stress Is Influenced By Personality, Resilience, Aerobic Fitness And Neurocognitive Function

Nicole M. Sekel¹, Meaghan E. Beckner¹, William R. Conkright¹, Alice D. LaGoy^{1,4}, Felix Proessel¹, Mita Lovalekar¹, Brian J. Martin¹, Leslie R. Jabloner¹, Alaska L. Beck¹, Shawn R. Eagle¹, Michael Dretsch⁵, Peter G. Roma^{2,6}, Fabio Ferrarelli⁴, Anne Germain⁴, Shawn D. Flanagan¹, Christopher Connaboy¹, Amy Haufler³, Bradley C. Nindl¹

Neuromuscular Performance and Hormonal Responses to Military Operational Stress in Men and Women

William R. Conkright,¹ Meaghan E. Beckner,¹ Aaron M. Sinnott,¹ Shawn R. Eagle,¹ Brian J. Martin,¹ Alice D. Lagoy,^{1,2} Felix Proessl,¹ Mita Lovalekar,¹ Tim L.A. Doyle,³ Phil Agostinelli,¹ Nicole M. Sekel,¹ Shawn D. Flanagan,¹ Anne Germain,² Christopher Connaboy,¹ and Bradley C. Nindl¹

Event	Group	Day 1: baseline	Day 2: stress onset	Day 3: peak stress	Day 4: recovery	Main effect of day p (partial η ²)	Main effect of sex p (partial η^2)
WCC (m·s ⁻¹)	Men	1.53 ± 0.38	1.56 ± 0.32	1.50 ± 0.39	1.50 ± 0.33	0.173 (0.027)	<0.001 (0.327)
FM (s)	Men	145.6 ± 13.1	1.07 ± 0.42 148.8 ± 16.1	146.5 ± 16.0	148.8 ± 16.6	0.119 (0.032)	0.020 (0.083)
CD (s)	Women Women	152.5 ± 13.3 41.5 ± 23.5 82.0 ± 32.2	157.4 ± 19.2 40.0 ± 13.7 72.7 ± 23.1	150.7 ± 17.0 39.8 ± 14.2 67.5 ± 11.0	145.7 ± 15.2 43.6 ± 11.3 67.1 ± 15.3	0.129 (0.030)	<0.001 (0.374)
300US (s)	Men Women	95.5 ± 18.5 109.1 \pm 14.8	98.3 ± 19.1 109.8 ± 15.7	102.0 ± 21.7 113.3 + 16.7	102.5 ± 18.4†	0.001 (0.084)	0.017 (0.087)
300LS (s)	Men Women	117.5 ± 25.8 128.9 ± 19.8	117.1 ± 28.5 128.9 ± 21.4	117.7 ± 28.5 133.5 ± 23.7	119.5 ± 25.8 130.3 ± 18.8	0.440 (0.015)	0.130 (0.038)
RM (s)	Men Women	$1,661.4 \pm 385.2$ $1,659.9 \pm 149.8$	$1,617.2 \pm 313.5$ $1,599.4 \pm 138.6$	$1,631.0 \pm 322.3$ $1,645.8 \pm 252.5$	$1,545.2 \pm 323.5$ $1,604.7 \pm 146.5$	0.127 (0.036)	0.881 (<0.001)

*WCC = water can carry; FM = fire and movement; CD = casualty drag; 300US = 300-m unloaded shuttle run; 300LS = 300-m loaded shuttle run; RM = ruck march. +Significantly different than baseline. Data are presented as mean \pm *SD*. Significance was set at p < 0.05.

ORIGINAL ARTICLE	The Physiological Society Physiological Reports	
Utility of extracellular vesi indicator of physiological r operational stress	cles as a potential biological resilience during military	
Meaghan E. Beckner ¹ William R. C. Zachary J. Clemens ² Brian J. Martin Fabrisia Ambrosio ^{2,4} Bradley C. Nin	onkright ¹ Amrita Sahu ² Qi Mi ¹ n ¹ Shawn D. Flanagan ¹ Fabio Ferrarelli ³ ndl ¹	Aller A

- Neuroendocrine biomarkers unable to differentiate trait-resilience
- In response to stress, high trait-resilience:
 - Greater heterogeneity among large-sized THSD1⁺ EVs
 - Greater decrease in side-scatter minimum pixel intensity
- Presence of physiological adaptations among high trait-resilient individuals

Leveraging Wearable Technologies

High Performance Model

- Commercial grade technology to assess performance and musculoskeletal injuries (MSKI) have been fully integrated into the High Performance Model for Olympic, professional and NCAA athletics
 - Force Plates, Questionnaires, GPS tracking, Urine and saliva samples to track physical and psychological readiness.

	Bases/Teams	Total Soldiers/Players	Ratio
Army Active Components	31 Bases	378,900 Active Component Soldiers	12,222 soldiers per base
National Football Organization	32 Teams	1,696 Active Roster Players	53 Players per team

Military Applications

- Assess injury risk
 - Suboptimal biomechanical patterns (xsens, DARI)
 - Estimate overexertion/overtraining (Catapult, Equivital)
- Streamline rehabilitation with objective data
 - Identify muscular asymmetries (DARI)
 - Identify physiological readiness (Catapult, Equivital)
- Optimize performance
 - Individualize training programs to target specific deficits

Screening Tests to detect physical readiness

- Consequently, there is a heighted awareness of **screening tests** that can inform military leadership regarding Musculoskeletal injury (MSKI) risk.
- Functional Movement Screen (FMS)
 - 2 systematic reviews = poor predictability. (Moran et. al. 2017, Dorrel et. al. 2015)
- Marked Motion Capture (MoCap)
 - Reserved for "state of the art" science laboratories
- There is a need for **field expedient** measures to accurately demonstrate MSKI risk associations.

1) Developing a Warfighter Mobility Signature and Predictive Algorithm For Musculoskeletal Injury Risk During Marine Corps Officer Candidate School

2) Development of a Physical Readiness Decision Tool to Leverage Wearable Technologies for Monitoring Warfighter's Mobility and Load Exposure

Movement DARI Markerless Motion Capture

Movement Screen

- Movement Patterns & Strategies
- Movement Asymmetries
- Joint Range of Motion
- Peak Joint Angles
- Joint Torque & Moments

Unsupervised Clustering Techniques Identify Movement Strategies in the Countermovement Jump Associated With Musculoskeletal Injury Risk During US Marine Corps Officer Candidates School

Bird, et. al. Frontiers in Physiology, 2022

Proportions of MSKI per movement strategy

Table 3. Proportions of MOCs with Lower Body and Torso Musculoskeletal Injury by Cluster

					Relative-Risk (95% CI)		
	C1(low-risk)	C2(moderate-risk)	C3(high-risk)	Fisher's exact test p value	C3/C1	C2/C1	C3/C2
%MSKI	28/203=13.8%	47/209=22.5%	78/256=30.5%	< 0.001	2.2(1.5-3.3)	1.6(1.1-2.5)	1.3(1.0-1.9)
%Male MSKI	26/195=13.3%	45/201=22.4%	38/151=25.2%	0.011	1.9(1.2-3.0)	1.7(1.1-2.6)	1.1(0.77-1.6)
%Female MSKI	2/8=25.0%	2/8=25.0%	40/105=38.1%	0.770	1.5(0.5-5.1)	1.0(0.2-5.5)	1.5(0.5-5.1)
%Male	195/203=96.1%	201/209=96.2%	151/256=59.0%	< 0.001			
%Female	8/203=3.9%	8/209=3.8%	105/256=41.0%	< 0.001			

Thresholds associated with movement strategy

						Bonferi pairwis	oni adjusted e compariso	l post hoc n p-value
	Abbreviation	C1(low-risk)	C2(moderate-risk)	C3(high-risk)	Omnibus p value	C3,C1	C2,C1	C3,C2
Kinetic Measures								
Braking RFD (N/s)	BRFD	4518±1725	4200±1556	2019±761	< 0.001	< 0.001	0.057	< 0.001
Braking Net Impulse (N*s)	BNI	111±21	122 ± 18	88±16	< 0.001	< 0.001	< 0.001	< 0.001
Propulsive Net Impulse (N*s)	PNI	238±33	228 ± 30	180±35	< 0.001	< 0.001	0.004	< 0.001
Peak Relative Propulsive	PRPP	59±7	51±6	46±6	< 0.001	< 0.001	< 0.001	< 0.001
Power (W/kg)								
Kinematic Measures		-						
Braking Phase (sec)	BP	0.23 ± 0.05	0.27 ± 0.05	0.32±0.07	< 0.001	< 0.001	< 0.001	< 0.001
Propulsive Phase (sec)	РР	0.33±0.04	$0.40{\pm}0.04$	0.42±0.05	< 0.001	< 0.001	< 0.001	< 0.001
†Max Hip Flexion (degrees)	HF	89.8±15.9	104.3±13.3	102.6±15.6	< 0.001	< 0.001	< 0.001	0.712
†Max Knee Flexion (degrees)	KF	102.6±10.4	126.0±9.4	114.3±13.0	< 0.001	< 0.001	< 0.001	< 0.001
†Max Ankle Flexion (degrees)	AF	29.6±4.9	36.8±5.3	33.0±5.6	< 0.001	< 0.001	< 0.001	< 0.001
†Dynamic Valgus (degrees)	DV	5.4±2.8	5.5±3.2	6.4±3.4	< 0.001	0.002	1.0	0.007

Table 6. Markerless Motion Capture and Force Plate Variables used for K-means Clustering in Marine Officer Candidates

Bone & Body Composition Dual-Energy X-Ray (DEXA)

- Bone Density
- Body Fat %
- Muscle Mass
- Muscle Imbalances

Bone Peripheral Quantitative Computed Tomography (HR-pQCT)

3D Bone Assessment

- Structure
- Composition
- Geometry

TIBIAL CORTICAL GEOMETRY PREDICTS BSI

- Greater bone size indicated by total area, circumference and robustness and were protective against BSI
- Higher estimated strength (SSI) is protective against BSI

	1997	
	A State	
A		

Total vBMD (mg/cm ³)	715.9 ± 66.1	749.4 ± 47.6	1.006 (0.999, 1.014)	0.104	1.006 (0.999, 1.014)	0.105
Total area (mm ²)	631.3 ± 98.1	537.5 ± 73.5	0.989 (0.982, 0.997)	0.004	0.985 (0.975, 0.995)	0.005
Cortical vBMD (mg/cm ³)	1107.2 ± 33.8	1116.0 ± 39.0	1.008 (0.988, 1.029)	0.416	1.004 (0.984, 1.025)	0.696
Cortical area (mm ²)	374.0 ± 60.6	337.6 ± 50.1	0.989 (0.978, 1.001)	0.062	0.988 (0.973, 1.003)	0.126
Cortical thickness (mm)	5.1 ± 0.7	5.1 ± 0.5	0.900 (0.355, 2.280)	0.824	1.161 (0.418, 3.226)	0.775
Endosteal circumference (mm)	56.5 ± 6.9	50.0 ± 4.2	0.855 (0.768, 0.952)	0.004	0.854 (0.761, 0.960)	0.008
Periosteal circumference (mm)	88.8 ± 7.0	82.0 ± 5.8	0.867 (0.787, 0.955)	0.004	0.823 (0.719, 0.941)	0.004
SSI (mm ³)	2995.4 ± 627.1	2458.0 ± 518.9	0.998 (0.997, 1.000)	0.010	0.998 (0.996, 1.000)	0.013
Robustness (mm)	1.6 ± 0.2	1.5 ± 0.2	0.007 (0.000, 0.214)	0.004	0.003 (0.000, 0.208)	0.007

*Adjusted for sex, age, BMI

66%

Koltun et al., Frontiers in Physiology, 2022

Wearables: Garmin Instinct Watch

Wearables: ActiGraph Activity Monitor

- Daily activity profile: Steps, kcals, activity counts
- Activity bouts: Custom-defined bouts of sustained physical activity
- Activity intensity: Time spent within different intensity categories
- Sleep score: Total sleep time, wake after sleep onset, sleep efficiency.
- Wear compliance: Amount and percentage subject wore monitor.

Wearables: iMeasureU Tibial Inertial Measurement Units (IMU)

- Wireless communication
- 12-hour battery life
- 1GB of storage
- Tri-axial accelerations

IMeasureU

MSKI Risk Associations – A novel approach

- The human organism is a dynamic and non-linear system. Stern et. al. 2019
- The analytical methodologies chosen need to adequately identify the relevant information and complex relationships associated with MSKI.
 - "Web of determinants" Bittencourt et. al. 2016

Figure produced in Draw.io

Comprehensive Human Performance Screening Battery (*CHPSB*)

Strength/Power (kinetics)

- Isometric Mid-thigh Pull
 - VALD Force Frame
 - Force Plate Testing
 - Vertical Jump

Movement (kinematics)

- DARI Marker less Motion
 Capture
 - Range of movements (i.e., Squat, jumps, lunges)

Aerobic Fitness

Biomarkers

Body Composition/Bone Density

٠

DXA, HR-pQCT

- Blood & Saliva
 - Bone Health, stress, immune

Bone, fat, and muscle mass

Questionnaires

- VO2 testing
 - Aerobic and anaerobic threshold testing Unclassified//FOUO

- Injury type, location, mechanism
- Injury history
- Activity habits

NMRL Mobile Van capabilities

- Bone Density
- Body Fat %
- Muscle Mass
- Muscle Imbalances

Strength Isometric mid thigh pull

Maximal Isometric Force
 Rate of Force Development
 Asymmetries Between limbs

Strength VALD Force Frame

Lower Body Isometric Strength

Hip

- Abduction/Adduction
- Flexion/Extension
- Internal/External Rotation

Knee

Flexion/Extension

Ankle

Inversion/Eversion

Power Force Plates

- Propulsive Force & Power
- Landing Force
- Rate of Force Development
- Impulse
 - [•] Jump Height
 - Asymmetries

Wearables: SPOT Trace Satellite Tracker

ŌURA Ring

READINESS

SLEEP

Next Steps: Serial Measures Salivary Biomarkers

 Investigate biomarkers associated with stress and immune function

Monitoring and Assessment Tools

<u>Comprehensive Human Performance Screening Battery</u> (CHPSB)

- Evaluate MWTC Cadre through varying physiological biomechanical and biochemical domains for evaluating physical readiness.
- Evaluated periodically [6 months] for a comprehensive individualized report and ranking across Cadre members.

Soldier Performance and Readiness as Tactical Athletes (SPARTA) Training Study

PHYSICAL TRAINING INTERVENTIONS STUDY OBJECTIVES 1. Determine which physical training intervention(s) are most effective for improving military occupational performance with respect to women in Ground Close Combat roles Strength and 2. Establish the influence of different physical training intervention(s) on detraining in women **Power Focus** Examine mechanisms underpinning adaptations to different types of physical training 3. Predominance of 3-4. Compare sex-specific patterns of adaptation and detraining in response to different physical training interventions 8RM range focused 12 weeks EXPERIMENTAL OUTCOMES and power-based 24 weeks training Strength Assessments +HIIT 1. 2. Tactical Athlete **Hybrid Group** Monitoring System intensities to target 3. Biomarkers 4. Physical Employment strength, power, 12 weeks Standard Performance hypertrophy, 8 5 Biomechanical muscular 24 weeks Analysis +HIIT endurance. 6. Neurocognitive isometric strength Function type IIA 7. Maximal Aerobic and stability Capacity 8. Muscle Biopsies **Control Group** 9. Load Carriage Training Continue with daily and Performance 24 weeks living activities 10. Bone Health / Strength with High-Res pQCT New hone formation during BC

Bone and Body Composition Adaptations to Training (BoBCAT)

BC Nindl¹, JA Cauley¹, F Ambrosio¹, PK Fazeli², M Hubal³, BJ Martin¹, MT Lovalekar¹, AJ Sterczala¹, SD Flanagan¹, KJ Koltun¹, CH Moon², H Iijima¹, JP Greeves⁴, TJ O'Leary⁴, SL Arana⁴ ¹University of Pittsburgh, Pittsburgh, PA, USA ²University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA. ³Indiana University-Purdue University, Indianapolis, IN, USA ⁴Army Health and Performance Research, Army Headquarters, Andover, Hampshire, UK

To do so, we aim to analyze training induced changes in bone density, geometry and strength as well as novel bone-muscle crosstalk factors, bone marrow adiposity, and extracellular vesicle (EV) cargo in a laboratory training group and a standard of care ROTC group. Additionally, we will compare the different exercise program parameters and training loads of Pitt athletic teams with changes in state of the science bone measures and body composition over the competitive season.

NSCOR: NASA Specialized Center of Research Biomarkers for adaptation and resilience in ICC/ICE environments

Thank You.